//
// Copyright (c) 2008, Brian Frank and Andy Frank
// Licensed under the Academic Free License version 3.0
//
// History:
// 17 Nov 08 Brian Frank Creation
//
using compiler
**
** JavaBridge is the compiler plugin for bringing Java
** classes into the Fantom type system.
**
class JavaBridge : CBridge
{
//////////////////////////////////////////////////////////////////////////
// Constructor
//////////////////////////////////////////////////////////////////////////
**
** Construct a JavaBridge for current environment
**
new make(Compiler c)
: super(c)
{
this.cp = initClassPath
}
//////////////////////////////////////////////////////////////////////////
// ClassPath
//////////////////////////////////////////////////////////////////////////
private ClassPath initClassPath()
{
// add all pods in flattened dependency chain to classpath
acc := Str:File[:] { ordered = true }
ns.depends?.each |d| { flattenDepends(acc, d) }
return ClassPath.forRuntime(acc.vals)
}
private Void flattenDepends(Str:File acc, CDepend d)
{
if (acc.containsKey(d.name)) return
pod := ns.resolvePod(d.name, compiler.input.inputLoc)
acc[d.name] = pod.file
pod.depends.each |x| { flattenDepends(acc, x) }
}
//////////////////////////////////////////////////////////////////////////
// Cleanup
//////////////////////////////////////////////////////////////////////////
override Void cleanup() { cp.close }
//////////////////////////////////////////////////////////////////////////
// Namespace
//////////////////////////////////////////////////////////////////////////
**
** Map a FFI "podName" to a Java package.
**
override CPod resolvePod(Str name, Loc? loc)
{
// the empty package is used to represent primitives
if (name == "") return primitives
// look for package name in classpatch
package := cp.packages[name]
if (package == null)
throw CompilerErr("Java package '$name' not found", loc)
// map package to JavaPod
return JavaPod(this, package)
}
//////////////////////////////////////////////////////////////////////////
// Call Resolution
//////////////////////////////////////////////////////////////////////////
**
** Resolve a construction call to a Java constructor.
**
override Expr resolveConstruction(CallExpr call)
{
// if the last argument is an it-block, then we know
// right away that we will not be passing it thru to Java,
// so strip it off to be appended as call to Obj.with
itBlock := call.args.last as ClosureExpr
if (itBlock != null && itBlock.isItBlock)
call.args.removeAt(-1)
else
itBlock = null
// if this is an interop array like IntArray/int[] use make
// factory otherwise look for Java constructor called <init>
JavaType base := call.target.ctype
if (base.isInteropArray)
call.method = base.method("make")
else
call.method = base.method("<init>")
// call resolution to deal with overloading
call = resolveCall(call)
// we need to create an implicit target for the Java runtime
// to perform the new opcode to ensure it is on the stack
// before the args (we don't do this for interop Array classes)
if (!base.isInteropArray)
{
loc := call.loc
call.target = CallExpr.makeWithMethod(loc, null, base.newMethod) { synthetic=true }
}
// if we stripped an it-block argument,
// add it as trailing call to Obj.with
if (itBlock != null) return itBlock.toWith(call)
return call
}
**
** Resolve a construction chain call where a Fantom constructor
** calls the super-class constructor. Type check the arguments
** and insert any conversions needed.
**
override Expr resolveConstructorChain(CallExpr call)
{
// we don't allow chaining to a this ctor for Java FFI
if (call.target.id !== ExprId.superExpr)
throw err("Must use super constructor call in Java FFI", call.loc)
// route to a superclass constructor
JavaType base := call.target.ctype.deref
call.method = base.method("<init>")
// call resolution to deal with overloading
return resolveCall(call)
}
**
** Given a dot operator slot access on the given foreign
** base type, determine the appopriate slot to use based on
** whether parens were used
** base.name => noParens = true
** base.name() => noParens = false
**
** In Java a given name could be bound to both a field and
** a method. In this case we only resolve the field if
** no parens are used. We also handle the special case of
** Java annotations here because their element methods are
** also mapped as Fantom fields (instance based mixin field).
**
override CSlot? resolveSlotAccess(CType base, Str name, Bool noParens)
{
// first try to resolve as a field
field := base.field(name)
if (field != null)
{
// if no () we used and this isn't an annotation field
if (noParens && (field.isStatic || !base.isMixin))
return field
// if we did find a field, then make sure we use that
// field's parent type to resolve a method (becuase the
// base type might be a sub-class of a Java type in which
// case it is unware of field/method overloads)
return field.parent.method(name)
}
// lookup method
return base.method(name)
}
**
** Resolve a method call: try to find the best match
** and apply any coercions needed.
**
override CallExpr resolveCall(CallExpr call)
{
// try to match against all the overloaded methods
matches := CallMatch[,]
CMethod? m := call.method
while (m != null)
{
match := matchCall(call, m)
if (match != null) matches.add(match)
m = m is JavaMethod ? ((JavaMethod)m).next : null
}
// if we have exactly one match use then use that one
if (matches.size == 1) return matches[0].apply(call)
// if we have multiple matches; resolve to
// most specific match according to JLS rules
// TODO: this does not correct resolve when using Fantom implicit casting
if (matches.size > 1)
{
best := resolveMostSpecific(matches)
if (best != null) return best.apply(call)
}
// zero or multiple ambiguous matches is a compiler error
s := StrBuf()
s.add(matches.isEmpty ? "Invalid args " : "Ambiguous call ")
s.add(call.name).add("(")
s.add(call.args.join(", ") |Expr arg->Str| { return arg.toTypeStr })
s.add(")")
throw err(s.toStr, call.loc)
}
**
** Check if the call matches the specified overload method.
** If so return method and coerced args otherwise return null.
**
internal CallMatch? matchCall(CallExpr call, CMethod m)
{
// first check if have matching numbers of args and params
args := call.args
if (m.params.size < args.size) return null
// check if each argument is ok or can be coerced
isErr := false
newArgs := args.dup
m.params.each |CParam p, Int i|
{
if (i >= args.size)
{
// param has a default value, then that is ok
if (!p.hasDefault) isErr = true
}
else
{
// ensure arg fits parameter type (or auto-cast)
newArgs[i] = coerce(args[i], p.paramType) |->| { isErr = true }
}
}
if (isErr) return null
return CallMatch { it.method = m; it.args = newArgs }
}
**
** Given a list of overloaed methods find the most specific method
** according to Java Language Specification 15.11.2.2. The "informal
** intuition" rule is that a method is more specific than another
** if the first could be could be passed onto the second one.
**
internal static CallMatch? resolveMostSpecific(CallMatch[] matches)
{
CallMatch? best := matches[0]
for (i:=1; i<matches.size; ++i)
{
x := matches[i]
if (isMoreSpecific(best, x)) { continue }
if (isMoreSpecific(x, best)) { best = x; continue }
return null
}
return best
}
**
** Is 'a' more specific than 'b' such that 'a' could be used
** passed to 'b' without a compile time error.
**
internal static Bool isMoreSpecific(CallMatch a, CallMatch b)
{
return a.method.params.all |CParam ap, Int i->Bool|
{
bp := b.method.params[i]
return ap.paramType.fits(bp.paramType)
}
}
//////////////////////////////////////////////////////////////////////////
// Overrides
//////////////////////////////////////////////////////////////////////////
**
** Called during Inherit step when a Fantom slot overrides a FFI slot.
** Log and throw compiler error if there is a problem.
**
override Void checkOverride(TypeDef t, CSlot base, SlotDef def)
{
// we don't allow Fantom to override Java methods with multiple
// overloaded versions since the Fantom type system can't actually
// override all the overloaded versions
jslot := base as JavaSlot
if (jslot?.next != null)
throw err("Cannot override Java overloaded method: '$jslot.name'", def.loc)
// route to method override checking
if (base is JavaMethod && def is MethodDef)
checkMethodOverride(t, base, def)
}
**
** Called on method/method overrides in the checkOverride callback.
**
private Void checkMethodOverride(TypeDef t, JavaMethod base, MethodDef def)
{
// bail early if we know things aren't going to work out
if (base.params.size != def.params.size) return
// if the return type is primitive or Java array and the
// Fantom declaration matches how it is inferred into the Fan
// type system, then just change the return type - the compiler
// will impliclty do all the return coercions
if (isOverrideInferredType(base.returnType, def.returnType))
{
def.ret = def.inheritedRet = base.returnType
}
// if any of the parameters is a primitive or Java array
// and the Fantom declaration matches how it is inferred into
// the Fantom type type, then change the parameter type to
// the Java override type and make the Fantom type a local
// variable:
// Java: void foo(int a) { ... }
// Fantom: Void foo(Int a) { ... }
// Result: Void foo(int a_$J) { Int a := a_$J; ... }
//
base.params.eachr |CParam bp, Int i|
{
dp := def.paramDefs[i]
if (!isOverrideInferredType(bp.paramType, dp.paramType)) return
// add local variable: Int bar := bar_$J
local := LocalDefStmt(def.loc)
local.ctype = dp.paramType
local.name = dp.name
local.init = UnknownVarExpr(def.loc, null, dp.name + "_\$J")
def.code.stmts.insert(0, local)
// rename parameter Int bar -> int bar_$J
dp.name = dp.name + "_\$J"
dp.paramType = bp.paramType
}
}
**
** When overriding a Java method check if the base type is
** is a Java primitive or array and the override definition is
** matches how the Java type is inferred in the Fantom type system.
** If we have a match return true and we'll swizzle things in
** checkMethodOverride.
**
static private Bool isOverrideInferredType(CType base, CType def)
{
// check if base class slot is a JavaType
java := base.toNonNullable as JavaType
if (java != null)
{
// allow primitives is it matches the inferred type
if (java.isPrimitive) return java.inferredAs == def
// allow arrays if mapped as Foo[] -> Foo?[]?
if (java.isArray) return java.inferredAs == def.toNonNullable && def.isNullable
}
return false
}
//////////////////////////////////////////////////////////////////////////
// CheckErrors
//////////////////////////////////////////////////////////////////////////
**
** Called during CheckErrors step for a type which extends
** a FFI class or implements any FFI mixins.
**
override Void checkType(TypeDef def)
{
// can't subclass a primitive array like ByteArray/byte[]
if (def.base.deref is JavaType && def.base.deref->isInteropArray)
{
err("Cannot subclass from Java interop array: $def.base", def.loc)
return
}
// we don't allow deep inheritance of Java classes because
// the Fantom constructor and Java constructor model don't match
// up past one level of inheritance
// NOTE: that that when we remove this restriction we need to
// test how field initialization works because instance$init
// is almost certain to break with the current emit design
javaBase := def.base
while (javaBase != null && !javaBase.isForeign) javaBase = javaBase.base
if (javaBase != null && javaBase !== def.base)
{
err("Cannot subclass Java class more than one level: $javaBase", def.loc)
return
}
// ensure that when we map Fantom constructors to Java
// constructors that we don't have duplicate signatures
ctors := def.ctorDefs
ctors.each |MethodDef a, Int i|
{
ctors.each |MethodDef b, Int j|
{
if (i > j && areParamsSame(a, b))
err("Duplicate Java FFI constructor signatures: '$b.name' and '$a.name'", a.loc)
}
}
}
**
** Do the two methods have the exact same parameter types.
**
static Bool areParamsSame(CMethod a, CMethod b)
{
if (a.params.size != b.params.size) return false
for (i:=0; i<a.params.size; ++i)
{
if (a.params[i].paramType != b.params[i].paramType)
return false
}
return true
}
//////////////////////////////////////////////////////////////////////////
// Coercion
//////////////////////////////////////////////////////////////////////////
**
** Return if we can make the actual type fit the expected
** type, potentially using a coercion.
**
Bool fits(CType actual, CType expected)
{
// use dummy expression and route to coerce code
dummy := UnknownVarExpr(Loc("dummy"), null, "dummy") { ctype = actual }
fits := true
coerce(dummy, expected) |->| { fits=false }
return fits
}
**
** Coerce expression to expected type. If not a type match
** then run the onErr function.
**
override Expr coerce(Expr expr, CType expected, |->| onErr)
{
// handle easy case
actual := expr.ctype
expected = expected.deref
if (actual == expected) return expr
// handle null literal
if (expr.id === ExprId.nullLiteral && expected.isNullable)
return expr
// handle Fantom to Java primitives
if (expected.pod == primitives)
return coerceToPrimitive(expr, expected.toNonNullable, onErr)
// handle Java primitives to Fan
if (actual.pod == primitives)
return coerceFromPrimitive(expr, expected, onErr)
// handle Java array to Fantom list
if (actual.name[0] == '[')
return coerceFromArray(expr, expected, onErr)
// handle Fantom list to Java array
if (expected.name[0] == '[')
return coerceToArray(expr, expected, onErr)
// handle sys::Func -> Java interface
if (actual is FuncType && expected.isMixin && expected.toNonNullable is JavaType)
return coerceFuncToInterface(expr, expected.toNonNullable, onErr)
// handle special classes and interfaces for built-in Fantom
// classes which actually map directly to Java built-in types
if (actual.isBool && boolTypes.contains(expected.toNonNullable.signature)) return box(expr)
if (actual.isInt && intTypes.contains(expected.toNonNullable.signature)) return box(expr)
if (actual.isFloat && floatTypes.contains(expected.toNonNullable.signature)) return box(expr)
if (actual.isDecimal && decimalTypes.contains(expected.toNonNullable.signature)) return expr
if (actual.isStr && strTypes.contains(expected.toNonNullable.signature)) return expr
// use normal Fantom coercion behavior
return super.coerce(expr, expected, onErr)
}
**
** Ensure value type is boxed.
**
private Expr box(Expr expr)
{
if (expr.ctype.isVal)
return TypeCheckExpr.coerce(expr, expr.ctype.toNullable)
else
return expr
}
**
** Coerce a fan expression to a Java primitive (other
** than the ones we support natively)
**
Expr coerceToPrimitive(Expr expr, JavaType expected, |->| onErr)
{
actual := expr.ctype
// sys::Int (long) -> int, short, byte
if (actual.isInt && expected.isPrimitiveIntLike)
return TypeCheckExpr.coerce(expr, expected)
// sys::Float (double) -> float
if (actual.isFloat && expected.isPrimitiveFloat)
return TypeCheckExpr.coerce(expr, expected)
// no coercion - type error
onErr()
return expr
}
**
** Coerce a Java primitive to a Fantom type.
**
Expr coerceFromPrimitive(Expr expr, CType expected, |->| onErr)
{
actual := (JavaType)expr.ctype
// int, short, byte -> sys::Int (long)
if (actual.isPrimitiveIntLike)
{
if (expected.isInt || expected.isObj)
return TypeCheckExpr.coerce(expr, expected)
}
// float -> sys::Float (float)
if (actual.isPrimitiveFloat)
{
if (expected.isFloat || expected.isObj)
return TypeCheckExpr.coerce(expr, expected)
}
// no coercion - type error
onErr()
return expr
}
**
** Coerce a Java array to a Fantom list.
**
Expr coerceFromArray(Expr expr, CType expected, |->| onErr)
{
actual := (JavaType)expr.ctype.toNonNullable
// if expected is array type
if (expected is JavaType && ((JavaType)expected).isArray)
if (actual.arrayOf.fits(((JavaType)expected).arrayOf)) return expr
// if expected is Obj
if (expected.isObj) return arrayToList(expr, actual.inferredArrayOf)
// if expected is list type
if (expected.toNonNullable is ListType)
{
expectedOf := ((ListType)expected.toNonNullable).v
if (actual.inferredArrayOf.fits(expectedOf)) return arrayToList(expr, expectedOf)
}
// no coercion available
onErr()
return expr
}
**
** Generate List.make(of, expr) where expr is Object[]
**
private Expr arrayToList(Expr expr, CType of)
{
loc := expr.loc
ofExpr := LiteralExpr(loc, ExprId.typeLiteral, ns.typeType, of)
call := CallExpr.makeWithMethod(loc, null, listMakeFromArray, [ofExpr, expr])
call.synthetic = true
return call
}
**
** Coerce a Fantom list to Java array.
**
Expr coerceToArray(Expr expr, CType expected, |->| onErr)
{
loc := expr.loc
expectedOf := ((JavaType)expected.toNonNullable).inferredArrayOf
actual := expr.ctype
// if actual is list type
if (actual.toNonNullable is ListType)
{
actualOf := ((ListType)actual.toNonNullable).v
if (actualOf.fits(expectedOf))
{
// (Foo[])list.asArray(cls)
clsLiteral := CallExpr.makeWithMethod(loc, null, JavaType.classLiteral(this, expectedOf))
asArray := CallExpr.makeWithMethod(loc, expr, listAsArray, [clsLiteral])
return TypeCheckExpr.coerce(asArray, expected)
}
}
// no coercion available
onErr()
return expr
}
**
** Attempt to coerce a parameterized sys::Func expr to a Java
** interface if the interface supports exactly one matching method.
**
Expr coerceFuncToInterface(Expr expr, JavaType expected, |->| onErr)
{
// check if we have exactly one abstract method in the expected type
loc := expr.loc
abstracts := expected.methods.findAll |CMethod m->Bool| { return m.isAbstract }
if (abstracts.size != 1) { onErr(); return expr }
method := abstracts.first
// check if we have a match
FuncType funcType := (FuncType)expr.ctype
if (!isFuncToInterfaceMatch(funcType, method)) { onErr(); return expr }
// check if we've already generated a wrapper for this combo
key := "${funcType.signature}+${method.qname}"
ctor := funcWrappers[key]
if (ctor == null)
{
ctor = generateFuncToInterfaceWrapper(expr.loc, funcType, expected, method)
funcWrappers[key] = ctor
}
// replace expr with FuncWrapperX(expr)
call := CallExpr.makeWithMethod(loc, null, ctor, [expr])
call.synthetic = true
return call
}
**
** Return if the specified function type can be used to implement
** the specified interface method.
**
Bool isFuncToInterfaceMatch(FuncType funcType, CMethod method)
{
// sanity check to map to callX method - can't handle more than 8 args
if (method.params.size > 8) return false
// check if method is match for function; first check is that
// method must supply all the arguments required by the function
if (funcType.params.size > method.params.size) return false
// check that func return type fits method return
retOk := method.returnType.isVoid || fits(funcType.ret, method.returnType)
if (!retOk) return false
// check all the method parameters fit the function parameters
paramsOk := funcType.params.all |CType f, Int i->Bool| { return fits(f, method.params[i].paramType) }
if (!paramsOk) return false
return true
}
**
** Generate the wrapper which implements the specified expected interface
** and overrides the specified method which calls the function.
**
CMethod generateFuncToInterfaceWrapper(Loc loc, FuncType funcType, CType expected, CMethod method)
{
// Fantom: func typed as |Str|
// Java: interface Foo { void bar(String) }
// Result: FuncWrapperX(func)
//
// class FuncWrapperX : Foo
// {
// new make(Func f) { _func = f }
// override Void bar(Str a) { _func.call(a) }
// Func _func
// }
// generate FuncWrapper class
name := "FuncWrapper" + funcWrappers.size
cls := TypeDef(ns, loc, compiler.types[0].unit, name, FConst.Internal + FConst.Synthetic)
cls.base = ns.objType
cls.mixins = [expected]
addTypeDef(cls)
// generate FuncWrapper._func field
field := FieldDef(loc, cls)
((SlotDef)field).name = "_func"
((DefNode)field).flags = FConst.Private + FConst.Storage + FConst.Synthetic
field.fieldType = funcType
cls.addSlot(field)
// generate FuncWrapper.make constructor
ctor := MethodDef(loc, cls, "make", FConst.Internal + FConst.Ctor + FConst.Synthetic)
ctor.ret = ns.voidType
ctor.paramDefs = [ParamDef(loc, funcType, "f")]
ctor.code = Block.make(loc)
ctor.code.stmts.add(BinaryExpr.makeAssign(
FieldExpr(loc, ThisExpr(loc), field),
UnknownVarExpr(loc, null, "f")).toStmt)
ctor.code.stmts.add(ReturnStmt.make(loc))
cls.addSlot(ctor)
// generate FuncWrapper override of abstract method
over := MethodDef(loc, cls, method.name, FConst.Public + FConst.Override + FConst.Synthetic)
over.ret = method.returnType
over.paramDefs = ParamDef[,]
over.code = Block.make(loc)
callArity := "call"
call := CallExpr.makeWithMethod(loc, FieldExpr(loc, ThisExpr(loc), field), funcType.method(callArity))
method.params.each |CParam param, Int i|
{
paramName := "p$i"
over.params.add(ParamDef(loc, param.paramType, paramName))
if (i < funcType.params.size)
call.args.add(UnknownVarExpr(loc, null, paramName))
}
if (method.returnType.isVoid)
over.code.stmts.add(call.toStmt).add(ReturnStmt(loc))
else
over.code.stmts.add(ReturnStmt(loc, call))
cls.addSlot(over)
// return the ctor which we use for coercion
return ctor
}
//////////////////////////////////////////////////////////////////////////
// Reflection
//////////////////////////////////////////////////////////////////////////
**
** Get a CMethod representation for 'List.make(Type, Object[])'
**
once CMethod listMakeFromArray()
{
return JavaMethod(
this.ns.listType,
"make",
FConst.Public + FConst.Static,
this.ns.listType.toNullable,
[
JavaParam("of", this.ns.typeType),
JavaParam("array", objectArrayType)
])
}
**
** Get a CMethod representation for 'Object[] List.asArray()'
**
once CMethod listAsArray()
{
return JavaMethod(
this.ns.listType,
"asArray",
FConst.Public,
objectArrayType,
[JavaParam("cls", classType)])
}
**
** Get a CType representation for 'java.lang.Class'
**
once JavaType classType()
{
return ns.resolveType("[java]java.lang::Class")
}
**
** Get a CType representation for 'java.lang.Object[]'
**
once JavaType objectArrayType()
{
return ns.resolveType("[java]java.lang::[Object")
}
//////////////////////////////////////////////////////////////////////////
// Fields
//////////////////////////////////////////////////////////////////////////
const static Str[] boolTypes := Str[
"[java]java.io::Serializable",
"[java]java.lang::Comparable",
]
const static Str[] intTypes := Str[
"[java]java.lang::Number",
"[java]java.io::Serializable",
"[java]java.lang::Comparable",
]
const static Str[] floatTypes := Str[
"[java]java.lang::Number",
"[java]java.io::Serializable",
"[java]java.lang::Comparable",
]
const static Str[] decimalTypes := Str[
"[java]java.lang::Number",
"[java]java.io::Serializable",
"[java]java.lang::Comparable",
]
const static Str[] strTypes := Str[
"[java]java.io::Serializable",
"[java]java.lang::CharSequence",
"[java]java.lang::Comparable",
]
JavaPrimitives primitives := JavaPrimitives(this)
ClassPath cp
private Str:CMethod funcWrappers := Str:CMethod[:] // funcType+method:ctor
}
**************************************************************************
** CallMatch
**************************************************************************
internal class CallMatch
{
CallExpr apply(CallExpr call)
{
call.args = args
call.method = method
call.ctype = method.isCtor ? method.parent : method.returnType
return call
}
override Str toStr() { return method.signature }
CMethod? method // matched method
Expr[]? args // coerced arguments
}